

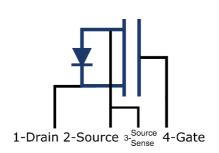
CC1740744L TO-247-4L SIC POWER MOSFETS

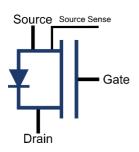
CoolCAD Power MOSFETs exceed power, efficiency portability capabilities and standard silicon devices and are available in a variety of breakdown voltages (650V, 1200V, 1700V & 3300V) and current ratings. They have low on-resistance and low leakage in the blocking state. **Fabricated** on high-quality SiC epitaxial layers, our proprietary fabrication process includes carefully chosen annealing procedures to ensure a high-quality SiC-SiO₂ gate oxide dielectric layer. Doping profile, neck region, and edge termination ensure extremely low Ron and high breakdown voltage.

BENEFITS

Higher efficiency

Reduced cooling


Increased power

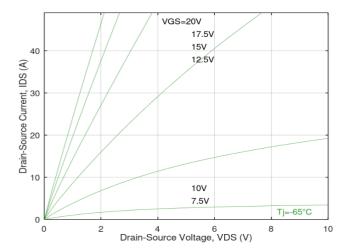

Reduced system volume

APPLICATIONS INCLUDE

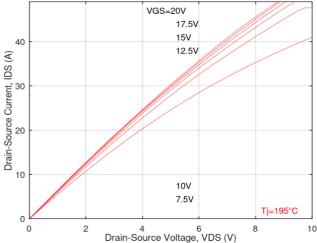
Electromechanical power converters, DC to DC, AC to DC and DC to AC converters, switching power supplies, electric vehicles, hybrid vehicles, solar and wind energy power converters.

Part Number	Package	Marking
CC1740744L	TO-247-4L	CoolCADElectronics

^{*} For description only. No rights are granted. No liability is assumed for choice of products.


Maximum Ratings						
*Characteristics	Symbol	Comments	Min	Тур	Max	Units
4				_	I	
DC blocking voltage	V _{DSmax}	T _J =25°C to 175°C	1700			V
Gate input voltage range	V _{GS}	Recommended range	-5		20	
Gate input voltage range	V GS	Dynamic	-7		22	V
Avalanche rating	V _{AVA}	V_{GS} =0V; I_{DS} =1mA; T_J =25°C	1700	>2000		V
Avaianche raung	V _{AVA}	V_{GS} =0V; I_{DS} =1mA; T_J =175°C	1700	~2000		V
		V _{GS} =20V; T _J =25°C		120		
Pulsed drain current	I _{Dpulsed}	V _{GS} =20V; T _J =100°C		100		A
		limited by Tj, tp=300μs				A
Continuous drain current	l ,	V _{GS} =20V; T _J =25°C			50	
	I _D	V _{GS} =20V; T _J =100°C			40	Α
Continuous drain power	Р	V _{GS} =20V; T _J =25°C			155	W
Maximum- junction temperature	_	Recommended range			195	
	T _{jmax}	During processing / soldering			250	°C

Comments	Electrical and Thermal Characteristics						
Gate threshold voltage	*Characteristics	Symbol	Comments	Min	Тур	Max	Units
Second	Gate threshold voltage	V	V_{DS} =1V; I_{DS} =20mA; T_J =25°C	2.63	2.78	2.93	V
Gate leakage		V TH	V_{DS} =1V; I_{DS} =20mA; T_J =175°C		1.44		V
Drain leakage	Gate leakage	loss	00 1 00 1		20		nΔ
Drain leakage Doss V_Ds=1000V; V_GS=0; T_J=175°C V_GS=20V; I_Ds=40A; T_J=25°C V_GS=20V; I_Ds=40A; T_J=25°C V_GS=20V; I_Ds=40A; T_J=75°C V_GS=20V; I_DS=50A; T_J=175°C V_GS=20V; I_DS=50A; T_J=175°C V_GS=20V; I_DS=50A; T_J=175°C V_GS=20V; I_DS=50A; T_J=175°C V_GS=20V; I_DS=40A; T_J=25°C V_GS=20V; I_DS=40A; T_J=25°C V_GS=20V; I_DS=40A; T_J=25°C V_GS=10V; I_DS=40A; T_J=25°C V_GS=10V; I_DS=30A; T_J=175°C V_GS=10V; I_DS=10V;	Julio Isalikago	.655					μ
	Drain leakage	I _{DSS}					μA
Drain-source on-resistance Roson Vos=20V; Ios=40A; T_j=175°C 145 43 mΩ				35		45	
Drain-source on-resistance Roson Vos=20V; Ips=50A; T_j=25°C 43 mΩ			** **	00		40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Drain-source on-resistance	R _{DSON}	*		-		mΩ
Transconductance G_m $V_{DS}=10V; I_{DS}=30A; T_j=25^{\circ}C$ $V_{DS}=10V; I_{DS}=30A; T_j=25^{\circ}C$ $V_{DS}=10V; I_{DS}=30A; T_j=25^{\circ}C$ $V_{DS}=10V; I_{DS}=30A; T_j=175^{\circ}C$ $V_{DS}=10V; I_{DS}=20V; I_{DS}=$			00 20 0		-		
Transconductance G _m V _{Ds} =10V; I _{Ds} =30A; T ₃ =25°C 13.6 12.5			00 00				
Input capacitance	Transconductance	G	50 . 50 . 0				s
Input capacitance		-111	*				_
Output capacitance C_{OSS} $V_{GS}=20V$, $V_{DS}=200V$ 1000V $f_{GS}=10V$, $V_{DS}=20V$ 1000V $f_{GS}=10V$, $V_{DS}=20V$ 1000V $f_{GS}=10V$, $f_{DS}=20V$ 1000V $f_{GS}=10V$, $f_{DS}=10V$, $f_{DS}=20V$ $f_{GS}=10V$, $f_{DS}=10V$, $f_{DS}=10V$ $f_{GS}=10V$, $f_{DS}=10V$, $f_{DS}=10V$ $f_{GS}=10V$, $f_{DS}=10V$, $f_{DS}=10V$ $f_{GS}=10V$, $f_{GS}=10V$ $f_{GS}=10V$, $f_{GS}=10V$ $f_{GS}=10V$, $f_{GS}=10V$ $f_{GS}=10V$, $f_{GS}=10V$	Input capacitance	C _{ISS}					
Reverse transfer capacitance C_{RSS} E_{OSS} Double integral of C_{OSS} (up to 1000V) E_{OSS} E_{OSS} Double integral of E_{OSS} E_{OSS} Double integral of E_{OSS} E_{O	Output capacitance				135 / 60		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse transfer capacitance		f=1MHz; T _J =25°C		19 / 11		·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stored energy at output	E _{oss}	Double integral of C _{OSS} (up to 1000V)		78		
Turn off switching energy (with body diode) Rise time t_r $V_{GS}=-4/19V; V_{DD}=800V; R_{G(ext)}=0\Omega$ $I_{DS}=30A; L=180\mu H; T_J=25^{\circ}C$ Fall time t_r Clamped inductive switching waveform $t_{DS}=30A; L=180\mu H; T_J=25^{\circ}C$ Clamped inductive switching waveform $t_{CS}=4/19V; V_{DD}=800V; R_{G(ext)}=0\Omega$ $t_{CS}=4/19V; V_{DS}=4/19V; V_$	0 0,	E _{ON}	, ,		520		μЈ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E _{OFF}	Clamped inductive switching waveform		230		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise time	ţ	, ,		65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall time	t _f	Clamped inductive switching waveform		20		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn off delay time		· ·		·		
	Gate Charge		I_{DS} =16A; R_L =50 Ω ; I_{GS} =38mA; T_J =25°C		150		nC
Thermal resistance:Junction to Case R _{JC} 0.6 °C/W	Internal gate resistance	R_G	f=1Mz; V_{AC} =25mV; T_J =25°C Open drain		10		Ω
	Thermal resistance:Junction to Case	R_{JC}			0.6		°C/W


Body diode characteristics						
*Characteristics	Symbol	Comments	Min	Тур	Мах	Units
		I _F =5A; V _{GS} =0V; T _J =25°C		2.57		
Diode forward voltage	V_{F}	I _F =5A; V _{GS} =0V; T _J =175°C		2.28		V
	v _F	I _F =10A; V _{GS} =-4V; T _J =25°C		3.76		
		I _F =10A; V _{GS} =−4V; T _J =175°C		3.09		
Pulsed diode current	1	$V_{GS}=0V; V_{DS}=-3V; T_{J}=25^{\circ}C$		10.3		A
r dised diode sarront	s(pulsed)	$V_{GS}=0V; V_{DS}=-3V; T_{J}=175^{\circ}C$		11		, , , , , , , , , , , , , , , , , , ,
Reverse recovery time	t _{rr}	V _{DD} =800V; V _{GS} =-4V; I _{DS} =50A		40		ns
Reverse recovery charge	Q_{rr}	R _{G(ext)} =0Ω L=180μH di/dt=840A/μs Clamped inductive switching waveform test circuit. Figure 26.		350		nC
Peak reverse recovery current	I _{RRM}			13.5		А

VGS=20V 17.5V 15V 12.5V Drain-Source Current, IDS (A) 10 10V 7.5V Tj=25°C 0 2 4 Drain-Source Voltage, VDS (V) 10

Figure 1: Low temperature output characteristics[†].

Figure 2: Room temperature output characteristics[†].

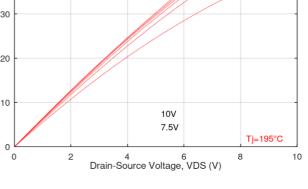


Figure 3: High temperature output characteristics[†].

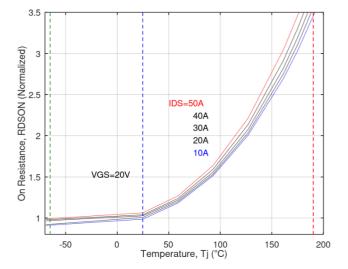


Figure 4: Normalized on-resistance vs. temperature. Dashed vertical lines indicate to room (25°C), high (190°C) and low (-65°C) temperatures.

[†]tp=300µs in pulsed IV measurements. Unless stated otherwise, temperature corresponds to junction temperature.

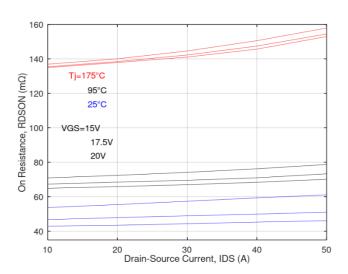


Figure 5: On-resistance vs. drain current.

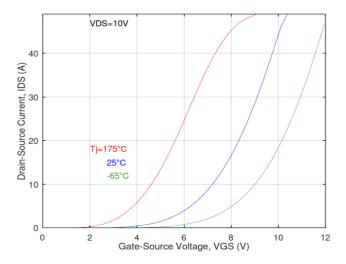
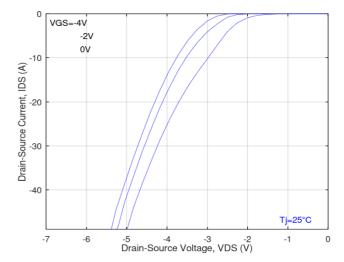
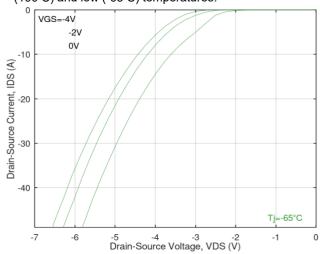
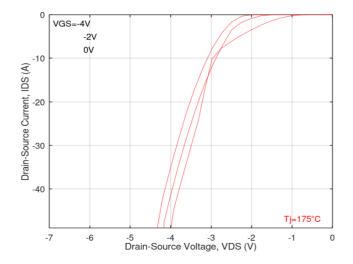




Figure 7: Transfer characteristics†.



150 VGS=15V 17.5V 20V 17.5V 20V 17.5V 20V 17.5V 20A 10A 30A 20A 10A 10A 150 200 Temperature, Tj (°C)

Figure 6: On-resistance vs. temperature. Dashed vertical lines indicate to room (25°C), high (190°C) and low (-65°C) temperatures.

Figure 8: Low temperature body diode characteristics[†].

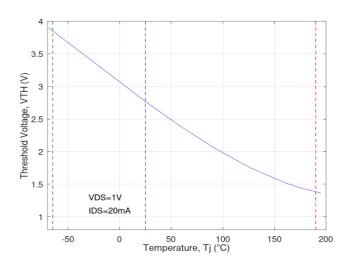


Figure 9: Room temperature body diode characteristics[†]. **Figure 10:** High temperature body diode characteristics[†].

[†] tp=300μs in pulsed IV measurements.
Unless stated otherwise, temperature corresponds to junction temperature.

20 IDS=16A IGS=38mA VDS=800V 15 Gate Voltage, VGS (V) 60 90 120 Gate Charge, Qg (nC) 0 30 150 180

Figure 11: Threshold vs. temperature. Dashed vertical lines indicate to room (25°C), high (190°C) and low (-65°C) temperatures.

VGS=0V 5V 10V 15V Drain-Source Current, IDS (A) 20V -20 -30 -40 Tj=-65°C -7 0 -6 -5 -4 -3 -2 Drain-Source Voltage, VDS (V)

Figure 12: Gate charge characteristics.

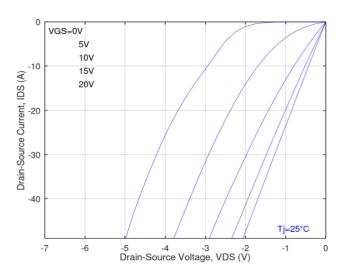
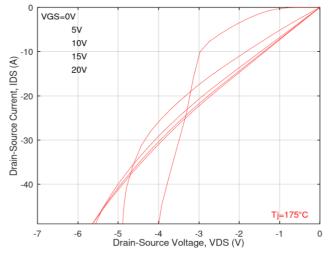



Figure 13: Low temperature third quadrant characteristics[†]. Figure 14: Room temperature third quadrant characteristics[†].

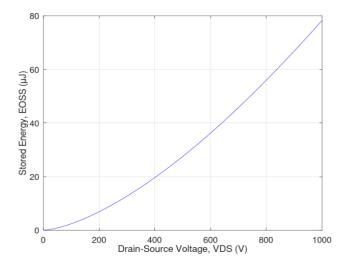


Figure 15: High temperature third quadrant characteristics[†].

Figure 16: Output capacitor stored energy.

[†]tp=300µs in pulsed IV measurements. Unless stated otherwise, temperature corresponds to junction temperature.

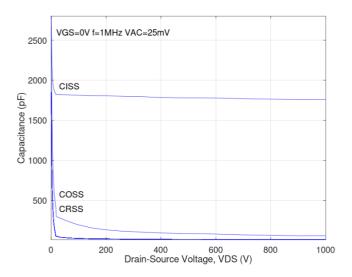


Figure 17: Capacitance vs. drain voltage.

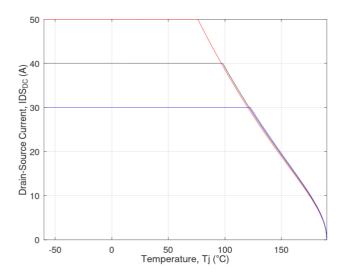
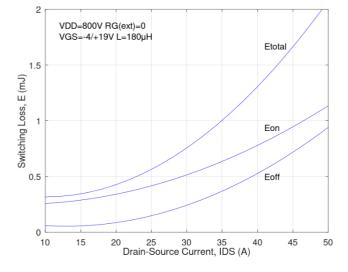



Figure 19: Continuous drain current vs. temperature.

Figure 21: Clamped inductive switching energy vs. drain current at 800V VDD.

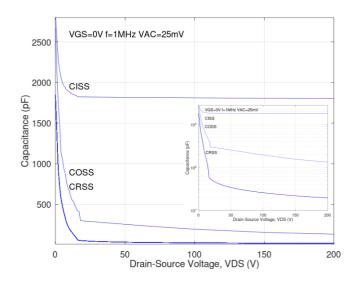


Figure 18: Capacitance vs. drain voltage.

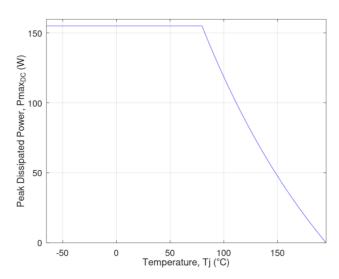
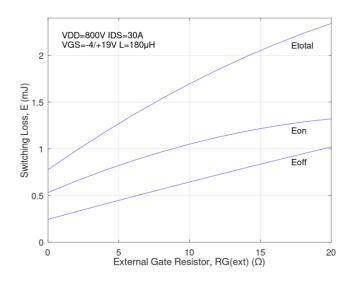
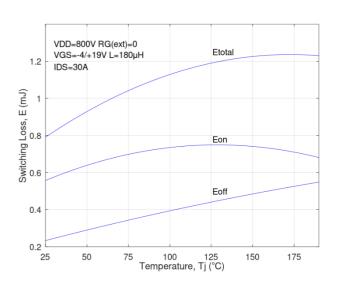
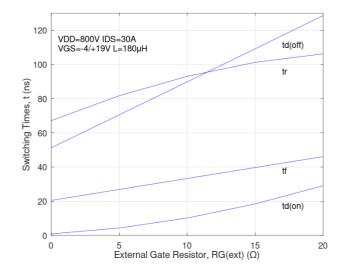



Figure 20: Power dissipation derating vs. temperature.


Figure 22: Clamped inductive switching energy vs. external gate resistance.


Unless stated otherwise, temperature corresponds to junction temperature.

Maryland

Figure 23: Clamped inductive switching energy vs. temperature.

Figure 24: Switching times vs. external gate resistance.

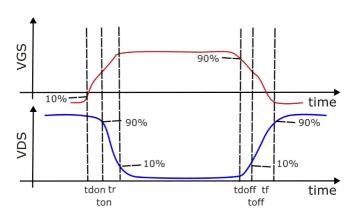


Figure 25: Timing references.

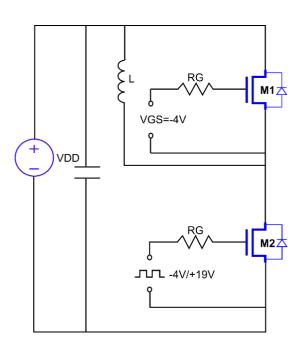
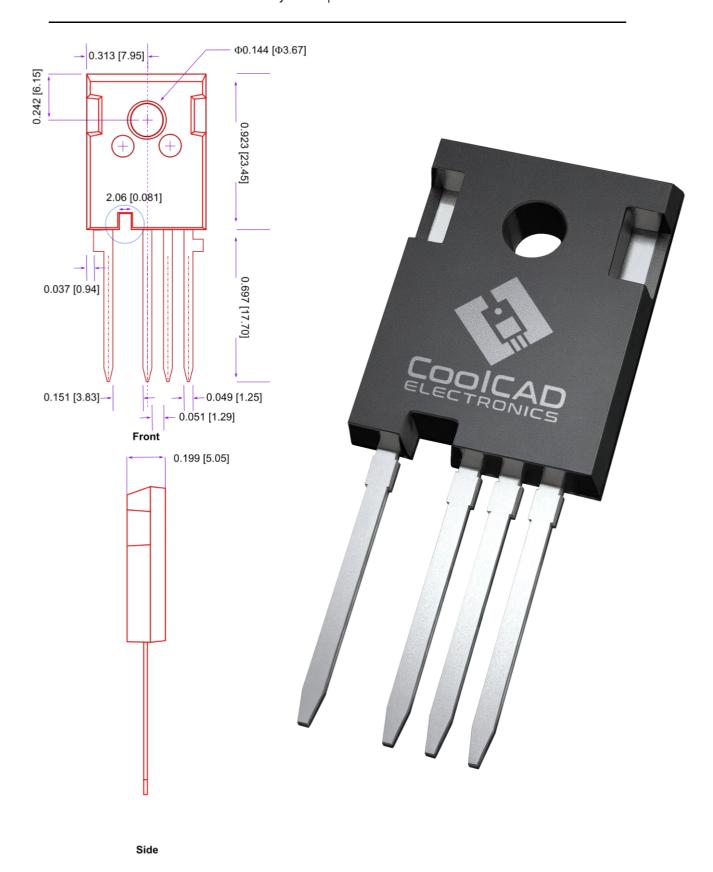


Figure 26: Clamped inductive switching waveform test circuit.


Figure 27: Gate charge test circuit.

Unless stated otherwise, temperature corresponds to junction temperature.

Maryland

CAUTION: These devices are ESD sensitive. Use proper handling procedures.

Disclaimer: These specifications may not be considered as a guarantee of components characteristics. Components have to be tested depending on intended application as adjustments may be necessary. The use of CoolCAD Electronics components in life support appliances and systems are subject to written approval of CoolCAD Electronics.

© 2025 **CoolCAD Electronics**. All rights reserved.

CoolCAD Electronics reserves the right to change without notice the specifications and information contained within.

Page 8 of 8. Revision 2 Oct-25

