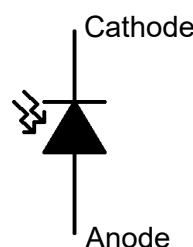
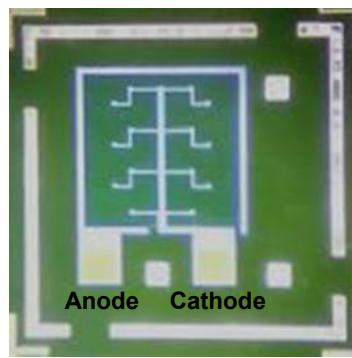
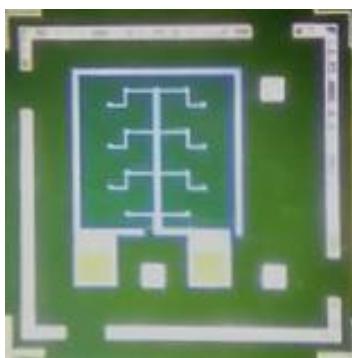


CCSiCUVPL01

SiC Ultraviolet Photodiodes




CoolCAD SiC Photodetectors have a unique set of advantages over Silicon Photodetectors, including, but not limited to, their incredibly low dark current, inherent visible light blindness, wide temperature range with no degradation (up to 400C), and long-term UV exposure and radiation robustness. These factors greatly reduce system volume, as the need for cooling mechanisms and filters is eliminated. Fabricated on high-quality SiC epitaxial layers, our proprietary fabrication processes allow us to customize these devices to your exact specifications.

BENEFITS

- Higher sensitivity
- Reduced cooling
- Low Dark-current
- Visible-Blind

APPLICATIONS INCLUDE

Ultraviolet signal detection, water filtration systems, pathogen detection, flame detection, and defect monitoring.

Part Number	Package	Marking
CCSiCUVPL01	Bare Die	N/A

** For description only. No rights are granted. No liability is assumed for choice of products.*

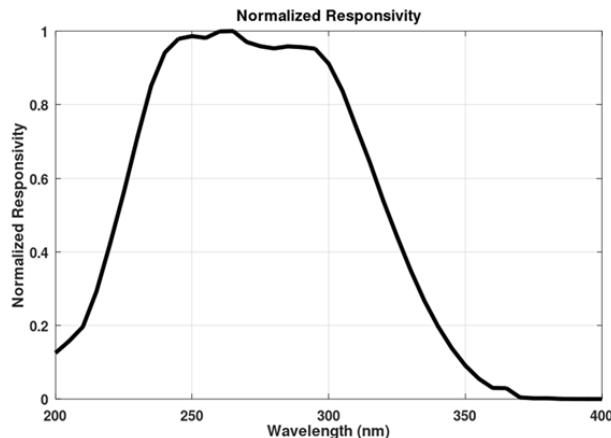
contact@coolcadelectronics.com

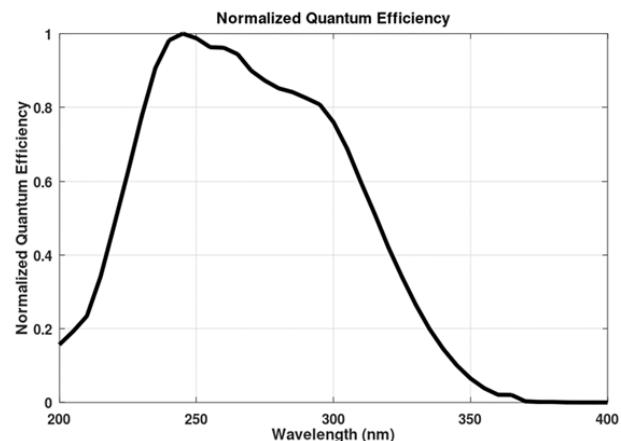
Maryland

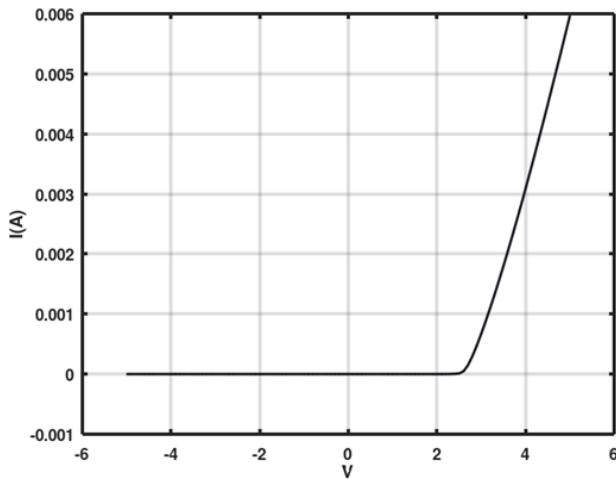
<https://coolcadelectronics.com>

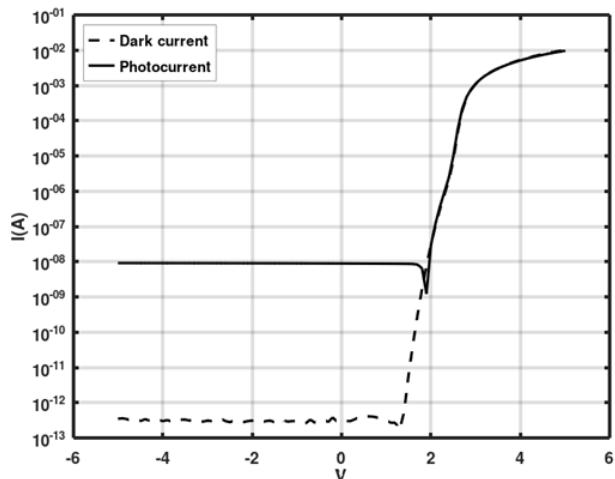
Electrical and Thermal Characteristics				
*Characteristics	Symbol	Comments	Typ	Units
Peak Responsivity	R_{max}	$V_R < 3V; \lambda = 265nm; T_A = 25^\circ C$	0.112	A/W
Peak Quantum Efficiency	η	$V_R < 3V; \lambda = 245nm; T_A = 25^\circ C$	0.54	-
Spectral Range, 90% max QE	$\lambda_{min_90\%} - \lambda_{max_90\%}$	$V_R < 3V; T_A = 25^\circ C$	235-270	nm
Spectral Range, FWHM QE	$\lambda_{min_FWHM} - \lambda_{max_FWHM}$	$V_R < 3V; T_A = 25^\circ C$	225-315	nm
Dark Current ¹	I_D	$V_R < 3V; T_A = 25^\circ C$	<500	fA/mm ²
Visible Blindness	-	Peak responsivity/resp. @ 400nm, $V_R = 2V$	>5000	-
Post-exposure Responsivity Drift	-	100J/cm ² total exposure @ 254 nm, $VR = 2V$	Negligible	
Active Area	A_{pd}	-	CCSiCUVPL01A – 0.52 CCSiCUVPL01B – 0.38 CCSiCUVPL01C – 0.24	mm ²
Capacitance	C	$V_R < 3V; T_A = 25^\circ C$	CCSiCUVPL01A – 37 CCSiCUVPL01B – 27 CCSiCUVPL01C – 17	pF

1. Measurement system noise floor limited
2. Back side of die should always be left floating


contact@coolcadelectronics.com


Maryland


https://coolcadelectronics.com


Figure 1: Normalized Responsivity of sample device.

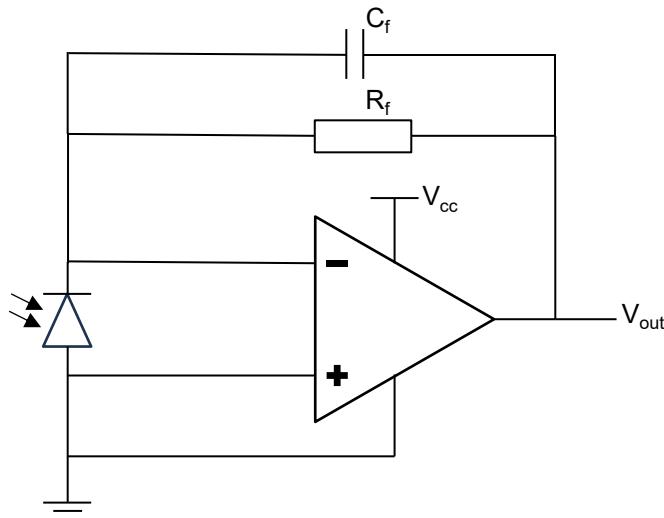
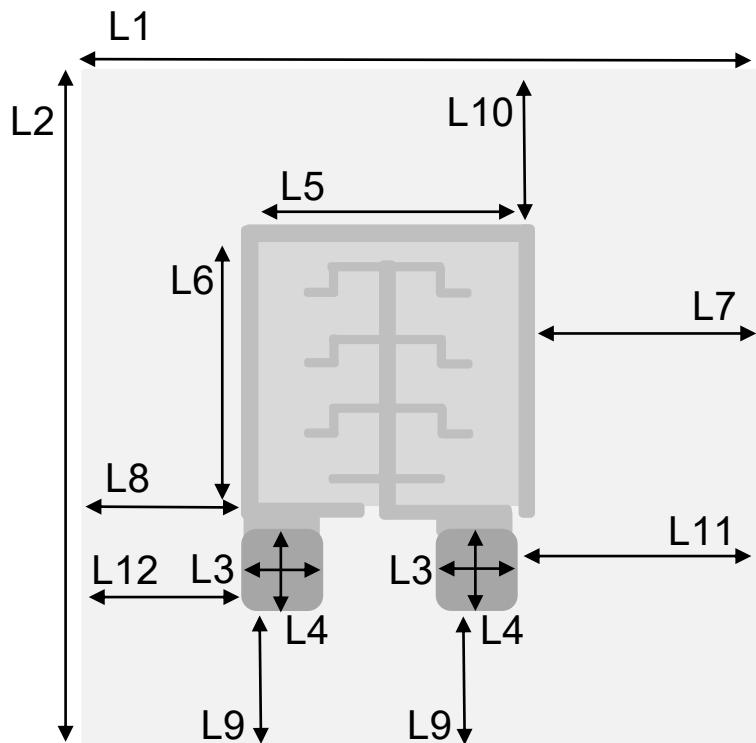

Figure 2: Normalized Quantum Efficiency of sample device.

Figure 3: Sample device IV characteristics, linear scale

Figure 4: Sample device IV characteristics, logarithmic scale. Photocurrent under 255nm illumination

Figure 5: Sample readout circuit with integrated photodiode


contact@coolcadelectronics.com

Maryland

<https://coolcadelectronics.com>

Die dimensions		
Parameter	Dimensions	Units
Die size (including dicing streets)	$L1 \times L2 \sim 1.65 \times 1.65$	mm
Cathode pad*	$L3 \times L4 \sim 0.19 \times 0.19$	mm
Anode pad*	$L3 \times L4 \sim 0.19 \times 0.19$	mm
Lateral Active Area	$L5 \sim 740$	μm
Vertical Active Area	CCSiCUVPL01A - $L6 \sim 740$ CCSiCUVPL01B - $L6 \sim 540$ CCSiCUVPL01C - $L6 \sim 340$	μm
Device to Right Die Edge	$L7 \sim 525$	μm
Device to Left Die Edge	$L8 \sim 325$	μm
Pads to Bottom Die Edge	$L9 \sim 330$	μm
Device to Top Die Edge	CCSiCUVPL01A - $L10 \sim 275$ CCSiCUVPL01B - $L10 \sim 475$ CCSiCUVPL01C - $L10 \sim 675$	μm
Anode Pad to Left Die Edge	$L11 \sim 330$	μm
Cathode Pad to Right Die Edge	$L12 \sim 585$	μm
Chip thickness	355 ± 10	μm

* Pads made of gold

CAUTION: These devices are ESD sensitive. Use proper handling procedures.

Disclaimer: These specifications may not be considered as a guarantee of components characteristics. Components have to be tested depending on intended application as adjustments may be necessary. The use of CoolCAD Electronics components in life support appliances and systems are subject to written approval of CoolCAD Electronics.

